5月29日:Yi Shang
发布时间:2019-05-28 浏览量:1271

报告题目:Small Object Detection and Counting in Aerial Images Using Drones and Deep Learning
报告人:   Prof.Yi Shang 
University of Missouri, Columbia, Missouri.
主持人:   曹桂涛 教授
报告时间:2019年5月29日  周三18:30 
报告地点:理科大楼B504

 

 

报告摘要:
Small object detection and counting in aerial images are active research and development areas and have many real applications. Monitoring waterfowl populations is essential for wildlife conservation in Missouri. This project aims at developing deep-learning based methods for small object (e.g., birds, people, animals, etc.) detection and counting in aerial images taken by drones or unmanned aircraft systems (UAS). The majority of the deep learning methods for object detection have been developed for large objects, and their performances on small-object detection are not as good. State-of-the-art deep learning methods for object detection are evaluated using a Little Birds in Aerial Imagery (LBAI) dataset, created from real-life aerial imagery data. They include object detection techniques YOLOv2, SSH, and Tiny Face, and small instance segmentation techniques U-Net and Mask R-CNN. SSH performed the best for easy cases, whereas Tiny Face performed the best for hard cases, where a cluttered background makes detecting birds difficult.

 

报告人简介:
Yi Shang is Professor and Director of Graduate Studies, Department of Electrical Engineering and Computer Science, University of Missouri, Columbia, Missouri. He received Ph.D. in Computer Science from University of Illinois at Urbana-Champaign in 1997, M.S. from the Institute of Computing Technology, Chinese Academy of Sciences, Beijing, in 1991, and B.S. from University of Science and Technology of China, Hefei, in 1988. He has published over 190 refereed papers in the areas of artificial intelligence, wireless sensor networks, mobile computing, and bioinformatics and has been granted 6 US patents. He has advised over 70 PhD and MS students. His research has been supported by NSF, NIH, US Department of Education, Army, DARPA, Microsoft, Raytheon, Missouri Department of Conservation, etc. Details of his lab, Distributed and Intelligent Computing Lab, can be found at http://dslsrv1.rnet.missouri.edu.

 

bat365在线中国登录入口bat365中文官网登录入口
学院地址:上海中山北路3663号理科大楼

                上海市浦东新区楠木路111号
院长信箱:yuanzhang@sei.ecnu.edu.cn | 办公邮箱:office@sei.ecnu.edu.cn | 院办电话:021-62232550
Copyright bat·365(中文)在线官方网站-登录入口 版权所有